Abstract

This paper describes a circuit-oriented leapfrog alternating direction implicit (ADI) method applied to a simulation of a power delivery network (PDN). An equivalent circuit model of the PDN is derived by using a recently-proposed conformal modeling technique, in which orthogonal meshes are used along with a treatment to improve the accuracy of the model. Since the conformal equivalent circuit model has a grid-like topology, it is suitable for direction-based algorithms such as an ADI method and the leapfrog ADI method. An advantage of the ADI-based method is that they can use a relatively-large time step size and reduce the total number of time steps in a transient simulation. In addition, the leapfrog ADI method is more efficient than the existing ADI method because its time marching procedure requires less updating processes. As a result, the conformal equivalent circuit model combined with the leapfrog ADI method can be accurate and efficient in modeling and analysis of the PDN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.