Abstract
Windows and domes that are shaped to aerodynamic requirements can increase range and speed for the host platform. This class of optical systems is referred to as conformal optics. The solution discussed here is intended for conformal missile systems having gimbals that point the optical line of sight through different parts of the dome. A conformal dome induces large amounts of varying aberration, tens to hundreds of waves across gimbal angle, and therefore requires dynamic correction. Space is very constricted in missile sensors, and it is therefore highly desirable to limit the number of motors used for aberration correction. This paper describes the performance of a new class of optical systems that employ counterrotating phase prisms to correct conformal dome aberrations while gimbaling the optical system. The phase surfaces on the prisms are described by Zernike circular polynomials. Since the shear across the phase surfaces is rotational, the only aberrations that are generated are those without rotational symmetry, such as tilt, coma, or astigmatism. Using this approach, CODE V® was used to analyze and design a compact, high-performance conformal optical system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.