Abstract
In this paper we study Dirac–Einstein equations on manifolds with boundary, restricted to a conformal class with constant boundary volume, under chiral bag boundary conditions for the Dirac operator. We characterize the bubbling phenomenon, also classifying ground state bubbles. Finally, we prove an Aubin-type inequality and a related existence result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.