Abstract
NiCo2O4 is a promising electrode material for supercapacitors and it has been widely investigated. However, its low conductivity restricts the reaction kinetics. Combining it with carbon materials can efficiently overcome the issue. But, very limited research about the homogenous coatings of NiCo2O4 nanocrystals on carbon nanotubes (CNTs) is reported. In this work, thin nanosheets and small nanoparticles of NiCo2O4 densely coated on CNTs are synthesized by tuning the annealing time with a hybrid of metal hydroxide@CNTs as a precursor. In the precursor, core−shell structures are formed by conformally coating 2D metal hydroxides on CNTs. After annealing it at 300 °C for different time, NiCo2O4 nanosheets or nanoparticles are then obtained and the core−shell structure is remained. Due to the reduced crystal size of NiCo2O4 and the high conductivity of CNTs, the composites have large specific capacitances, excellent rate performances, and good stability. The composite of NiCo2O4 nanoparticles on CNTs has a higher specific capacitance, about 1786 F g−1 at 0.5 A g−1, than the hybrid of NiCo2O4 nanosheets on CNTs due to their different morphologies. Using the composite as positive electrode and activated carbon as negative electrode, a hybrid capacitor cell can work in a voltage of 1.6 V, delivering an energy density of 32.5 Wh kg−1 at 800 W kg−1, showing a large potential for supercapacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.