Abstract

AbstractCharge transfer at the semiconductor–electrolyte junction is one of the main challenges for further improvement of photoelectrochemical (PEC) water splitting cells due to the poor surface catalytic properties of most semiconductors for the water oxidation reaction. Here it is shown, for the first time, that a conformal and thin carbon nitride (CN) layer can efficiently extract holes from ZnO nanowires (NWs), leading to a great enhancement of both PEC performance and stability in alkaline solution. The conformal CN coating is acquired by using a new synthetic method which involves the deposition of small supramolecular assemblies on ZnO‐NWs as a seeding layer for the CN growth. Detailed PEC characterization reveals that the CN facilitates the hole transfer from the ZnO‐NWs to the electrolyte and acts as a protective shell, resulting in 3.5 times higher current densities and high external quantum efficiencies at 1.23 V versus RHE compared to the pristine ZnO‐NWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.