Abstract

Let M(r) be the moduli space of rank r vector bundles with trivial determinant on a Riemann surface X . This space carries a natural line bundle, the determinant line bundle L . We describe a canonical isomorphism of the space of global sections of L^k with a space known in conformal field theory as the ``space of conformal blocks, which is defined in terms of representations of the Lie algebra sl(r, C((z))).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.