Abstract

In this paper the solution of conformable Laplace equation, \frac{\partial^{\alpha}u(x,y)}{\partial x^{\alpha}}+ \frac{\partial^{\alpha}u(x,y)}{\partial y^{\alpha}}=0, where 1 < α ≤ 2 has been deduced by using fractional fourier series and separation of variables method. For special cases α =2 (Laplace's equation), α=1.9, and α=1.8 conformable fractional fourier coefficients have been calculated. To calculate coefficients, integrals are of type "conformable fractional integral".

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.