Abstract

AbstractA new approach to obtain corrected depth profiles by confocal Raman microscopy, which considers diffraction and refraction effects is presented.The problem of diffraction effects encountered intrinsically in the confocal configuration can be described using a linear Fredholm integral equation of the first kind, which correlates apparent and true Raman intensities with the depth resolution curve of the instrument. Refractive index differences between air and the polymer sample, which cause further errors in the obtained depth profile due to strong aberration effects have been considered. This has been carried out using an empirical variation of the depth resolution function, which is able to simulate the broadening of the depth of focus with depth and also the discrepancy between nominal and measured depth scales.It is shown that considerable differences between apparent and corrected depth profiles exist at the surface and that these depend on the gradient of the profile and the depth resolution of the Raman microscope. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.