Abstract

In the immune system, mast cells are a key cell type in the pathogenesis of immunoglobulin E (IgE)-dependent hypersensitivity reactions. Engagement of the high-affinity IgE receptors by multivalent antigens initiates the downstream activation of signal-transducing enzymes and evokes degranulation and cytokine production via an increase in the intracellular Ca2+ concentration. In addition, mast cells also play a prominent role in non-IgE-mediated hypersensitivity reactions. Mast cells are closely apposed to nerves in vivo and are likely to be regulated functionally by nerves. However, the molecular mechanisms for mast cell activation in an IgE-dependent and -independent manner have not been fully clarified. Confocal laser scanning microscopy has played an essential role in cell biology by allowing visualization of specific intracellular signaling molecules with high spatiotemporal resolution in living cells. We have studied intracellular movements of Ca2+ using a specific fluorescent probe and several types of signaling molecules using derivatives of green fluorescent protein in a living single mast cell using a microscopic strategy. We here describe our imaging analysis of the calcium signals to the nucleus, the movement of secretory granules in the degranulation process, and the nucleocytoplasmic shuttling of mitogen-activated protein kinase in mast cells. Further, we demonstrate that direct communication between mast cells and nerves occurs. These findings provide useful information from a new perspective to understand the molecular mechanisms of allergic reaction and inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call