Abstract

We introduce data-structural bootstrapping, a technique to design data structures recursively, and use it to design confluently persistent deques. Our data structure requires O(log* k) worst-case time and space per deletion, where k is the total number of deque operations, and constant worst-case time and space for other operations. Further, the data structure allows a purely functional implementation, with no side effects. This improves a previous result of Driscoll, Sleator, and Tajan (in "Proceedings 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 1991," pp. 89-99).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.