Abstract

Slippery hydrodynamics in grooved hydrophobic microchannels is known to be primarily dictated by the area of the gas–liquid contact surface. Here, we augment this classical notion by bringing out the critical role played by the channel dimensions on the underlying slip mechanisms and the consequent drag reduction. Our analysis, towards this, reveals the non-trivial implication of gas–liquid interface topology and its position inside the groove towards dictating the underlying frictional characteristics, which in turn is largely dependent on the confluence of the channel hydraulic diameter and the groove width. These results may turn out to be of immense consequence towards arriving at preferred frictional drag characteristics of hydrophobic microchannels and nanochannels by judicious choices of the pertinent geometric parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.