Abstract

We apply an idea originated in the theory of programming languages - monadic meta-language with a distinction between values and computations - in the design of a calculus of cut-elimination for classical logic. The cut-elimination calculus we obtain comprehends the call-by-name and call-by-value fragments of Curien-Herbelin's lambda-bar-mu-mu-tilde-calculus without losing confluence, and is based on a distinction of "modes" in the proof expressions and "mode" annotations in types. Modes resemble colors and polarities, but are quite different: we give meaning to them in terms of a monadic meta-language where the distinction between values and computations is fully explored. This meta-language is a refinement of the classical monadic language previously introduced by the authors, and is also developed in the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.