Abstract
Currently, conflict-free routing in AGV systems is established by means of one of the following three approaches: (i) the problem elimination through the adoption of a segmented path flow or tandem queue configuration; (ii) the identification of imminent collisions through forward sensing and their aversion through vehicle backtracking and/or rerouting; or (iii) the imposition of zone control and extensive route pre-planning, typically based on deterministic timing of the vehicle traveling and docking stages. Among these three approaches, the segmented path flow-based approach presents the highest robustness to the system stochasticities/randomness, but at the cost of restricted vehicle routings and the need for complicated handling operations. This paper proposes an alternative conflict resolution strategy that will ensure robust AGV conflict resolution, while maintaining the operational flexibility provided by free vehicle travel on arbitrarily structured guidepath networks. Specifically, the approach advocated in this paper also employs zone control, but it determines vehicle routes incrementally, one zone at a time. Routing decisions are the result of a sequence of safety and performance considerations, with the former being primarily based on structural/logical rather than timing aspects of the system behavior. The resulting control problem is characterized as the AGV structural control. After defining the notion of AGV structural control, the paper proceeds to the formal characterization and analysis of the problem, and to the development of a structural control policy appropriate for the class of AGV resource allocation systems. The paper concludes with some discussion on the accommodation of emerging AGV operational features in the proposed modeling and analysis framework, and the integration of AGV structural control with the broader control of material-flow among the shop-floor workstations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.