Abstract

Donald Hebb proposed a hypothesis that specialised groups of neurons, called cell-assemblies (CAs), form the basis for neural encoding of symbols in the human mind. It is not clear, however, how CAs can be re-used and combined to form new representations as in classical symbolic systems. We demonstrate that Hebbian learning of synaptic weights alone is not adequate for all tasks, and that additional meta-control processes should be involved. We describe an earlier proposed architecture ( Belavkin & Huyck, 2008) implementing an adaptive conflict resolution process between CAs, and then evaluate it by modelling the probability matching phenomenon in a classic two-choice task. The model and its results are discussed in view of mathematical theory of learning and existing cognitive architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.