Abstract
Two essential ingredients of modern mixed-integer programming solvers are diving heuristics, which simulate a partial depth-first search in a branch-and-bound tree, and conflict analysis, which learns valid constraints from infeasible subproblems. So far, these techniques have mostly been studied independently: primal heuristics for finding high-quality feasible solutions early during the solving process and conflict analysis for fathoming nodes of the search tree and improving the dual bound. In this paper, we pose the question of whether and how the orthogonal goals of proving infeasibility and generating improving solutions can be pursued in a combined manner such that a state-of-the-art solver can benefit. To do so, we integrate both concepts in two different ways. First, we develop a diving heuristic that simultaneously targets the generation of valid conflict constraints from the Farkas dual and the generation of improving solutions. We show that, in the primal, this is equivalent to the optimistic strategy of diving toward the best bound with respect to the objective function. Second, we use information derived from conflict analysis to enhance the search of a diving heuristic akin to classic coefficient diving. In a detailed computational study, both methods are evaluated on the basis of an implementation in the source-open-solver SCIP. The experimental results underline the potential of combining both diving heuristics and conflict analysis. Summary of Contribution. This original article concerns the advancement of exact general-purpose algorithms for solving one of the largest and most prominent problem classes in optimization, mixed-integer linear programs. It demonstrates how methods for conflict analysis that learn from infeasible subproblems can be combined successfully with diving heuristics that aim at finding primal solutions. For two newly designed diving heuristics, this paper features a thoroughly computational study regarding their impact on the overall performance of a state-of-the-art MIP solver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.