Abstract
The minimum latency data aggregation schedule is one of the fundamental problems in wireless sensor networks. Most existing works assumed that the transmission ranges of sensor nodes cannot be adjusted. However, sensors with adjustable transmission ranges have advantages in energy saving, reducing transmission interference and latency. In this paper, we study the minimum latency conflict-aware data aggregation scheduling problem with adjustable transmission radii: given locations of sensors along with a base station, all sensors could adjust their transmission radii and each sensor's interference radius is α times of its transmission radius, we try to find a data aggregation schedule in which the data from all sensors can be transmitted to the base station without conflicts, such that the latency is minimized. We first partition the set of all nodes into two parts: the major set and the minor set. Then, we design different scheduling strategies for the two sets, respectively. Finally, we propose an approximation algorithm for the problem and prove the performance ratio of the algorithm is bounded by a nearly constant. Our experimental results evaluate the efficiency of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.