Abstract

This paper conflates two heat exchanger design approaches – the ε-Ntu (effectiveness–number of transfer units) and the EGM (entropy generation minimization) – focusing on heat exchangers with uniform wall temperature, i.e. condensers and evaporators. An algebraic formulation which expresses the dimensionless rate of entropy generation as a function of the heat exchanger geometry (number of transfer units), the thermal-hydraulic characteristics (friction factor and Colburn j-factor), and the operating conditions (heat transfer duty, core velocity, surface temperature, and fluid properties) is derived. It is shown that there does exist a particular number of transfer units which minimizes the dimensionless rate of entropy generation. An algebraic expression for the optimum heat exchanger effectiveness, based on the working conditions, heat exchanger geometry and fluid properties, is also presented. The theoretical analysis led to the conclusion that a high effectiveness heat exchanger design does not necessarily provide the best thermal-hydraulic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.