Abstract

Systematic unbiased high-throughput screening (HTS) of drug combinations (DCs) in well-characterized tumor cell lines is a data-driven strategy to identify novel DCs with potential to be developed into effective therapies. Four DCs from a DC HTS campaign were selected for confirmation; only one appears in clinicaltrials.gov and limited preclinical in vitro data indicates that the drug pairs interact synergistically. Nineteen DC-tumor cell line sets were confirmed to interact synergistically in three pharmacological interaction models. We developed an imaging assay to quantify accumulation of the ABCG2 efflux transporter substrate Hoechst. Gefitinib and raloxifene enhanced Hoechst accumulation in ABCG2 (BCRP)-expressing cells, consistent with inhibition of ABCG2 efflux. Both drugs also inhibit ABCB1 efflux. Mitoxantrone, daunorubicin, and vinorelbine are substrates of one or more of the ABCG2, ABCB1, or ABCC1 efflux transporters expressed to varying extents in the selected cell lines. Interactions between ABC drug efflux transporter inhibitors and substrates may have contributed to the observed synergy; however, other mechanisms may be involved. Novel synergistic DCs identified by HTS were confirmed in vitro, and plausible mechanisms of action studied. Similar approaches may justify the testing of novel HTS-derived DCs in mouse xenograft human cancer models and support the clinical evaluation of effective in vivo DCs in patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.