Abstract

AbstractAlkanes such as n‐hexane have been used as co‐solvents in the production of functionalized semiconductor nanoparticles from alkenes and alkynes using Reactive High Energy Ball Milling (RHEBM) under the assumption that they are non‐reactive under typical milling conditions. In this paper, a comparative study with two hydrocarbon solvents of comparable chain length, 1‐hexyne, and n‐hexane, and their milling products using three different commercially available silicon precursors, namely single crystal silicon wafers and polycrystalline particles having a nominal size of 4 µm and 1 mm, is reported. It is found that nanoparticle formation and surface functionalization in all the three silicon systems occurs only with 1‐hexyne; n‐hexane is non‐reactive and does not lead to appreciable functionalized nanoparticle formation under the conditions studied. Nanoparticles (where formed) and microparticle byproducts of appropriate samples are characterized by Transmission electronic microscope (TEM), Fourier transform infrared (FTIR), Photoluminiscence spectroscopy (PL), Nuclear magnetic resonance 1H/13C NMR, and thermogravimetry TGA to separately confirm nanoparticle formation and surface functionalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.