Abstract
In previous studies, genetic correlations were observed between hypnotic sensitivity to ethanol and high-affinity neurotensin receptor (NTS1) binding. Provisional quantitative trait loci (QTLs) were identified for these traits, and some of these QTLs were found on common chromosomal regions. In continued efforts to examine the relationship between NTS1 binding capacity and hypnotic sensitivity to ethanol, studies were designed to confirm correlations between NTS1 densities in the brain, duration of ethanol-induced loss of righting reflex (LORR), and blood ethanol concentrations at regain of righting reflex (BECRR). Another purpose of the study was to confirm QTLs for these traits. ILS X ISS F2 mice and HAS X LAS F2 rats as well as the progenitors were tested for LORR, BECRR, and NTS1 densities. Phenotypic correlations were calculated between LORR and BECRR and between these measures and NTS1 densities in striatum from both mice and rats. The F2 mice were genotyped by using polymorphic markers for five previously reported QTLs for LORR to confirm QTLs for BECRR and NTS1 densities in striatum, ventral midbrain, and frontal cortex. Phenotypic correlations were found between LORR and BECRR (r = -0.66 to -0.74, p < 10(-9)) and between these measures and NTS1 densities in striatum (r = 0.28-0.38, p < 10(-2)) from both mice and rats. QTLs for LORR and BECRR (lod score = 2-6) were found in common regions of chromosomes 1, 2, and 15. By using the combined results from a previous LSXSS RI study and the current results, a suggestive QTL (lod score = 3.1) for striatal NTS1 receptor densities was found on chromosome 15 at approximately 60 cM, in the same region as the chromosome 15 LORR/BECRR QTL. The results are in agreement with previously reported correlations and QTLs for NTS1 receptor densities and measures of hypnotic sensitivity to ethanol in mice and extend those correlations to another species, the rat. These findings support a role for NTS1 in genetically mediated differences in hypnotic sensitivity to ethanol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.