Abstract

In 1/1 mass ratio mixtures made of single strand DNA and single-walled carbon nanotubes lyotropic nematic phases are formed. The process is assisted by segregative phase separation procedures. The liquid crystalline order occurring therein was confirmed by optical polarizing microscopy and zero-shear rheology. The resulting nematic droplets were dispersed in protein or cationic surfactant solutions, under appropriate pH and/or ionic strength conditions. The components of the hosting fluid(s) rapidly adsorb onto the droplets, form a permanent peel on their surface, and confine them. The peel resists osmotic gradients and has significant stability. The distribution of the species in the droplet and in the peel was determined by SEM. Data indicate that the peel contains protein or surfactant, depending on the titrant, when the core is rich in DNA and nanotubes. According to electron microscopy, nematic order in the droplets is partly retained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.