Abstract

The 24-membered ring -SYT type extra-large pore zeolite, denoted as DESO-SYSU-3, has been synthesized by employing N,N′-diethylsophoridine and trimethylsulfanium in a mixed-template system, where the N,N′-diethylsophoridine and trimethylsulfanium played different roles in the crystallization process. A single usage of N,N′-diethylsophoridine led to the formation of an unknown phase (donated as SYSU-5). These results reveal that the utilization of alkaloid-derived organic structure-directing agents (OSDAs) is an efficient synthetic strategy to produce specific extra-large pore zeolites and related structures. Compared to the prototype SYSU-3, the addition of TMSF into the system not only improved the silicon content in the framework of DESO-SYSU-3 but also facilitated the generation of carbon dots (CDs) confined in extra-large pore structure. The structure and the proposed formation mechanism of CDs were investigated based on HRTEM, XPS, FI-IR, UV–Vis, Raman and photoluminescence spectrum. The CDs@zeolite composite exhibited intriguing optical properties of both fluorescence and room temperature phosphorescence, respectively. This work extends extra-large pore zeolite as the matrix for the development of CDs@zeolite composites with tunable optical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call