Abstract
The 24-membered ring -SYT type extra-large pore zeolite, denoted as DESO-SYSU-3, has been synthesized by employing N,N′-diethylsophoridine and trimethylsulfanium in a mixed-template system, where the N,N′-diethylsophoridine and trimethylsulfanium played different roles in the crystallization process. A single usage of N,N′-diethylsophoridine led to the formation of an unknown phase (donated as SYSU-5). These results reveal that the utilization of alkaloid-derived organic structure-directing agents (OSDAs) is an efficient synthetic strategy to produce specific extra-large pore zeolites and related structures. Compared to the prototype SYSU-3, the addition of TMSF into the system not only improved the silicon content in the framework of DESO-SYSU-3 but also facilitated the generation of carbon dots (CDs) confined in extra-large pore structure. The structure and the proposed formation mechanism of CDs were investigated based on HRTEM, XPS, FI-IR, UV–Vis, Raman and photoluminescence spectrum. The CDs@zeolite composite exhibited intriguing optical properties of both fluorescence and room temperature phosphorescence, respectively. This work extends extra-large pore zeolite as the matrix for the development of CDs@zeolite composites with tunable optical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.