Abstract

Enhancement of parallel (x-y plane) dielectric permittivity of confined fluids has been shown previously. However, a theoretical model that explains this enhancement is lacking thus far. In this study, using statistical-mechanical theories and molecular dynamics simulations, we show an explicit relation between the parallel dielectric permittivity, density variations, and dipolar correlations for protic and aprotic fluids confined in slit-like channels. We analyze the importance of dipolar correlations on enhancement of parallel dielectric permittivity inside large channels and extreme confinements. In large channels, beyond the interfacial region, dipolar correlations exhibit bulk-like behavior. Under extreme confinement, the correlations become stronger to the extent that they give rise to a giant increase in the parallel dielectric permittivity. This sudden increase in dielectric permittivity can be a signature of a liquid transition into higher-ordered structures and has important consequences for understanding ion transport, molecular dissociation, and chemical reactions inside nanoconfined environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.