Abstract

In this paper, we introduce and numerically simulate a quantum-field-theoretic phenomenon called the gauge “slingshot” effect and study its production of gravitational waves. The effect occurs when a source, such as a magnetic monopole or a quark, crosses the boundary between the Coulomb and confining phases. The corresponding gauge field of the source, either electric or magnetic, gets confined into a flux tube stretching in the form of a string (cosmic or a QCD type) that attaches the source to the domain wall separating the two phases. The string tension accelerates the source toward the wall as sort of a slingshot. The slingshot phenomenon is also exhibited by various sources of other codimensionality, such as cosmic strings confined by domain walls or vortices confined by Z2 strings. Apart from the field-theoretic value, the slingshot effect has important cosmological implications, as it provides a distinct source for gravitational waves. The effect is expected to be generic in various extensions of the standard model such as grand unification. Published by the American Physical Society 2024

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call