Abstract

Carbon nanotube with electric fluxes confined in one dimension is studied. We show that a Coulomb interaction leads to a confinement phase with many properties similar to QCD in 4D. Low-energy physics is described by the massive Schwinger model with multi-species fermions labeled by the band and valley indices. We propose two means to detect this state. One is through an optical measurement of the exciton spectrum, which has been calculated via the ’t Hooft–Berknoff equation with the light-front field theory. We show that the Gell–Mann−Oakes−Renner relation is satisfied by a dark exciton. The second is the nonlinear transport which is related to Coleman’s ‘half-asymptotic’ state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.