Abstract

Ag(111) surface state electrons have been confined in symmetric and asymmetric Fabry-Perot resonators formed by two atomically parallel step edges. The local density of states in the resonators has been measured by means of low-temperature scanning tunneling spectroscopy and can perfectly be explained with a simple Fabry-Perot-like model. The energy dependent reflection amplitudes and scattering phase shifts of the different kinds of Ag(111) step edges have been determined with high accuracy. The model character of the resonators opens up quantitative electron scattering experiments at test structures brought into the resonator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.