Abstract

One-dimensional metallic slit array has been intensively studied in the spectral range from ultraviolet to near-infrared due to its enhanced transmission for transverse magnetic waves. However, the transmission enhancement is sensitive to the wavelength of incident radiation because of resonance characteristics. In this paper, we theoretically demonstrate that confining mid-infrared radiation to nanometer scales with a large transmission enhancement can be achieved from an aluminum slit array in a wavelength-insensitive manner, for potential applications in localized heating and nanothermal patterning. The Poynting vector and energy density calculated from the rigorous coupled-wave analysis (RCWA) are used to explain the strong localization of electromagnetic energy in the near-field regime. Furthermore, the localization of energy is also studied when a dielectric substrate is used to support the slit array in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call