Abstract

A hybrid double-skin tubular members (DSTM) consist of three composite materials in one section, include fiber-reinforced polymer (FRP) tube outward, steel tube inward and concrete is in between. These three materials give the member unique properties like protect member from harsh environment, reduce the amount of concrete by the presence of an inner steel tube that allowed the passage of services. Therefore, consider sustainable structure elements, as well as the rising strengthening of members and excellent corrosion resistance. This paper presents an experimental and analytical study of twenty-four circular columns with two types; concrete-filled FRP tube (CFFT) and double skin tubular column (DSTC), with a dimension of 100 × 310 mm which constructed and testing under an axial compressive load till failure, with four variables: numbers of layers of outer FRP tube, the compressive strength of concrete, thickness to diameter ratio and void ratio of inner steel tube. The experimental results showed that the concrete was effected confinement in hybrid DSTC led to very ductile behavior of stress–strain relationship and the number of outer FRP layers was the most effective parameters on DSTCs behavior. The nominal confinement ratio was affected by the thickness of outer FRP tube and compressive strength of concrete inside DSTCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.