Abstract

Using density functional theory calculations including a Hubbard $U$ term we explore the effect of strain and confinement on the electronic ground state of superlattices containing the band insulator LaAlO$_3$ and the correlated metal LaNiO$_3$. Besides a suppression of holes at the apical oxygen, a central feature is the asymmetric response to strain in single unit cell superlattices: For tensile strain a band gap opens due to charge disproportionation at the Ni sites with two distinct magnetic moments of 1.45$\mu_{\rm B}$ and 0.71$\mu_{\rm B}$. Under compressive stain, charge disproportionation is nearly quenched and the band gap collapses due to overlap of $d_{3z^2-r^2}$ bands through a semimetallic state. This asymmetry in the electronic behavior is associated with the difference in octahedral distortions and rotations under tensile and compressive strain. The ligand hole density and the metallic state are quickly restored with increasing thickness of the (LaAlO$_3$)$_n$/(LaNiO$_3$)$_n$ superlattice from $n=1$ to $n=3$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.