Abstract

Metal-porous oxide nanocomposites present great interest in optical devices and heterogeneous catalysis. For these applications, particle shape and size control, as well as accessibility, are critical aspects. In this work, gold nanoparticles (NPs) were infiltrated into mesoporous TiO2 thin films (MTTF) by an impregnation-reduction method. In situ ellipsometry measurements were performed during thermal treatment to follow in real time the changes in the optical constants and thickness of the composites systems while being submitted to continuous heating at different rates, from room temperature up to 600 °C. Complementary characterization by UV–visible spectrophotometry, grazing incident wide angle scattering (GIWAXS), and X-ray reflectometry (XRR) were performed. TEM microscopy was used to analyze the morphological changes in the composite films after the thermal treatment. Our experiments demonstrate that particle coarsening starts at temperatures below 200 °C through the processes of ripening and parti...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.