Abstract
High-precision knowledge of electromagnetic form factors of nuclei is an important current activity in nuclear and atomic physics. Such precision mandates that effects of the nonzero spatial extent of the constituent nucleons be treated carefully. A series of simple, Poincaré-invariant, composite-proton models that respect the Ward-Takahashi identity and in which quarks are confined are used to study such effects. All of the models display a general theorem showing how the medium modification of proton structure must occur. Combining this result with lattice QCD calculations leads to a conclusion that a bound proton must be larger than a free one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.