Abstract

Thermal cross-linking is widely used to impart stability or improved mechanical properties to layer-by-layer (LbL) assemblies. However, the kinetics of thermal cross-linking within LbL films is not well understood. Furthermore, because LbL films are generally ultrathin (<100 nm), the influence of confinement on cross-linking kinetics is potentially substantial. Using temperature-controlled ellipsometry, differential scanning calorimetry, and thermal gravimetric analysis, we are able to accurately track amide cross-linking within poly(allylamine hydrochloride)/poly(acrylic acid) LbL films. The rate of amidation is strongly influenced by film thickness and surface chemistry, which indicates that the observed “confinement effects” are primarily related to the catalytic contribution of hydroxyl groups present on the substrate’s surface. The analytical techniques presented herein highlight new ways to access thermochemical information within ultrathin LbL assemblies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.