Abstract

In the present work, we studied the protonation reaction of styrene inside the cavity of acidic H-Y zeolite. Density functional theory calculation using M06-2X functional and analysis of quantum theory of atoms in molecules are used to investigate the confinement effects of zeolite framework on species involved on the reaction. A detailed analysis of the topology of the electron density of interactions among reactants, transition state, and intermediate products with the cavity of H-Y zeolite is performed, extracting conclusions about adsorption, catalysis, and confinement effects. Identification and quantification of host–guest interactions between zeolite framework and styryl cation support the larger contribution of weak closed-shell interactions in stabilization of the formed carbenium ion. Our results clearly show that reaction energies for all formed species inside a zeolite with large void structure are also significantly governed by the confinement effects related to weak host–guest interactions. ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.