Abstract
LiBH4 is a promising material for hydrogen storage and as a solid-state electrolyte for Li ion batteries. Confining LiBH4 in porous scaffolds improves its hydrogen desorption kinetics, reversibility, and Li+ conductivity, but little is known about the influence of the chemical nature of the scaffold. Here, quasielastic neutron scattering and calorimetric measurements were used to study support effects for LiBH4 confined in nanoporous silica and carbon scaffolds. Pore radii were varied from 8 Å to 20 nm, with increasing confinement effects observed with decreasing pore size. For similar pore sizes, the confinement effects were more pronounced for silica than for carbon scaffolds. The shift in the solid–solid phase transition temperature is much larger in silica than in carbon scaffolds with similar pore sizes. A LiBH4 layer near the pore walls shows profoundly different phase behavior than crystalline LiBH4. This layer thickness was 1.94 ± 0.13 nm for the silica and 1.41 ± 0.16 nm for the carbon scaffolds. Quasi-elastic neutron scattering confirmed that the fraction of LiBH4 with high hydrogen mobility is larger for the silica than for the carbon nanoscaffold. These results clearly show that in addition to the pore size the chemical nature of the scaffold also plays a significant role in determining the hydrogen mobility and interfacial layer thickness in nanoconfined metal hydrides.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.