Abstract

Based on first-principles calculations, we predict that the monolayer AuTe2Cl is a quantum spin Hall (QSH) insulator with a topological band gap about 10 meV. The three-dimensional (3D) AuTe2Cl is a topological semimetal that can be viewed as the monolayer stacking along [Formula: see text] axis. By studying the energy-level distribution of [Formula: see text] orbitals of Te atoms for the bulk and the monolayer, we find that the confinement effect driven [Formula: see text] band inversion is responsible for the topological nontrivial nature of monolayer. Since 3D bulk AuTe2Cl has already been experimentally synthesized, we expect that monolayer AuTe2Cl can be exfoliated from a bulk sample and the predicted QSH effect can be observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.