Abstract

Fluorescence intensity measurements of chromophore-doped or -labeled polymers have been used for the first time to determine the effects of decreasing film thickness on glass transition temperature, T(g), the relative strength of the glass transition, and the relative rate of physical aging below T(g) in supported, ultrathin polymer films. The temperature dependence of fluorescence intensity measured in the glassy state of thin and ultrathin films of pyrene-doped polystyrene (PS), poly(isobutyl methacrylate) (PiBMA), and poly(2-vinylpyridine) (P2VP) differs from that in the rubbery state with a transition at T(g). Positive deviations from bulk T(g) are observed in ultrathin PiBMA and P2VP films on silica substrates while substantial negative deviations from bulk T(g) are observed in ultrathin PS films on silica substrates. The relative difference in the temperature dependences of fluorescence intensity in the rubbery and glassy states is usually reduced with decreasing film thickness, indicating that the strength of the glass transition is reduced in thinner films. The temperature dependence of fluorescence intensity also provides useful information on effects of processing history as well as on the degree of polymer-substrate interaction. In addition, when used as a polymer label, a mobility-sensitive rotor chromophore is demonstrated to be useful in measuring relative rates of physical aging in films as thin as 10 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call