Abstract

We report observation of fluorescence from individual rhodamine 6G molecules in streams of charged 1-μm-diameter water droplets. With this approach, illumination volumes comparable to diffraction-limited fluorescence microscopy techniques (≤500 aL) are achieved, resulting in similarly high contrast between single-molecule fluorescence signals and nonfluorescent background. However, since the fluorescent molecules are confined to electrically charged droplets, in situ electrodynamic manipulation (e.g., focusing, switching, or merging) can be accomplished in a straightforward manner, allowing experimental control over both the delivery of molecules of interest to the observation region and the laser-molecule interaction time. As illustrated by photocount statistics that are independent of molecular diffusion and spatial characteristics of the excitation field, individual rhodamine 6G molecules in 1-μm droplets are reproducibly delivered to a target a few micrometers in diameter at a rate of between 10 and 100 Hz, with laser beam transit times more than 1 order of magnitude longer than diffusion-limited laser-molecule interaction times in equivalent volumes of free solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.