Abstract

High-precision quantum-mechanical calculations have been developed to investigate positronium (Ps) scattering. Positronium scattering experiments are a powerful tool to study positronium-matter interactions, but the theoretical description of these experiments needs better accuracy. We have developed an ab initio confined variational approach that can reach higher collision energy, includes higher orbital momenta and uses small confining radii. Calculation of the Ps--He momentum-transfer cross section shows that the experimental Doppler broadening spectroscopy results are questionable. The energy dependence of the pickoff annihilation rate is also calculated, demonstrating an important role of the so far neglected $P$-wave contribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.