Abstract

Herein, silver wire is synthesized electrochemically within a nanopipette using the nanopipette-liquid/liquid interface. The i-t curve characterizes the growth state of the silver wire. The higher rate of current increase indicates the faster electron transfer and the faster growth of the silver wire; conversely, when the current does not increase significantly with time, i.e., the rate of increase of the current is small, the growth rate of the silver wire is slow. The main driving force for the growth of silver into a linear structure is the theoretical current differential between the water and oil, caused by the concentration difference between the silver nitrate and ferrocene. The growth of the silver wire is also influenced by the shape of the nanopipette. If the diameter of the pipet increases quickly, silver wire tends to produce multibranched structures, while a smaller diameter makes it easier to obtain silver wire with fewer branches due to the confinement effect. This method is also applicable to the synthesis of gold within a nanopipette. The combination of nanopipette and metallic material using a liquid-liquid interface results in a broader application of nanopipettes for nanopore sensors, nanopore electrodes, bipolar electrodes, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.