Abstract

A self-propagating reaction between ferrocene and iron nitrate nonahydrate that is initiated at room temperature is discovered. Amorphous carbon-encapsulated Fe3O4 nanocrystals (Fe3O4@C) can be one-step prepared in an autoclave through this reaction. The equiaxed Fe3O4 nanocrystals have typical dimensions in the range of 5–60 nm with a median size of 24.1 nm, and their weight percent is up to 82.3%. The course of the reaction is recorded, and the formation mechanism of Fe3O4@C with the core–shell structure is proposed. The scaling-up synthesis is also achieved, and 52.1 g of the Fe3O4@C can be obtained in a single batch. The shock wave appeared in the fast gas release self-propagating reaction in confined space plays a decisive role in the preparation of homogeneous Fe3O4@C with a core–shell structure. The Fe3O4@C anode shows excellent capacity retention with a high specific capacity of 494 mAh g−1 at 1 A g−1 in the 200th cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call