Abstract

The primary focus of this paper is the conjugate heat transfer during vertical impingement of a two-dimensional (slot) submerged confined liquid jet using liquid ammonia as the working fluid. Numerical model for the heat transfer process has been developed. The solid region has been modeled along with the fluid region as a conjugate problem. Discrete heat sources have been used to study the overall effect on convective heat transfer. Simulation of discrete heat sources was done by introducing localized heat fluxes at various locations and their magnitudes being varied. Simulations are performed for two different substrate materials namely silicon and stainless steel. The equations solved in the liquid region included the conservation of mass, conservation of momentum, and conservation of energy. In the solid region, only the energy equation, which reduced to the heat conduction equation, had to be solved. The solid-fluid interface temperature showed a strong dependence on several geometric, fluid flow, and heat transfer parameters. The Nusselt number increased with Reynolds number. For a given flow rate, a higher heat transfer coefficient was obtained with smaller slot width and lower impingement height. For a constant Reynolds number, jet impingement height and plate thickness, a wider opening of the slot provided higher average heat transfer coefficient and higher average Nusselt number. A higher average heat transfer coefficient was seen at a smaller thickness, whereas a thicker plate provided a more uniform distribution of heat transfer coefficient. Higher thermal conductivity substrates also provided a more uniform heat distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call