Abstract
When a ferrofluid drop is trapped in a horizontal Hele-Shaw cell and subjected to a vertical magnetic field, a fingering instability results in the droplet evolving into a complex branched structure. This fingering instability depends on the magnetic field ramp rate but also depends critically on the initial state of the droplet. Small perturbations in the initial droplet can have a large influence on the resulting final pattern. By simultaneously applying a stabilizing (horizontal) azimuthal magnetic field, we gain more control over the mode selection mechanism. We perform a linear stability analysis that shows that any single mode can be selected by appropriately adjusting the strengths of the applied fields. This offers a unique and accurate mode selection mechanism for this confined magnetic fluid system. We present the results of numerical simulations that demonstrate that this mode selection mechanism is quite robust and "overpowers" any initial perturbations on the droplet. This provides a predictable way to obtain patterns with any desired number of fingers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.