Abstract

Confined electronic states in quantum rings formed by spatially modulated finite Dirac gap (FDGQR) in graphene are systematically studied by series-expansion method, and are compared with those in infinite-mass-boundary and one-dimensional quantum rings. The shape-size effect of FDGQR is illustrated to be distinct from that in graphene quantum dots. The Aharonov-Bohm effect in FDGQR is clearly shown by the energy spectrum and the optical-transition probabilities. The FDGQR coupled with the electrostatic-potential induced nanoring is found useful for modulating the Dirac electronic states and the optical-transition probabilities. These results may help us to understand and to control the quantum behaviors of confined electronic states in graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call