Abstract

Using a solvable model, the two-dimensional two-component plasma, we study a Coulomb gas confined in a disk and in an annulus with boundaries that can adsorb some of the negative particles of the system. We obtain explicit analytic expressions for the grand potential, the pressure and the density profiles of the system. By studying the behavior of the disjoining pressure we find that without the adsorbing boundaries the system is naturally unstable, while with attractive boundaries the system is stable because of a positive contribution from the surface tension to the disjoining pressure. The results for the density profiles show the formation of a positive layer near the boundary that screens the adsorbed negative particles, a typical behavior in charged systems. We also compute the adsorbed charge on the boundary and show that it satisfies a certain number of relations, in particular an electro-neutrality sum rule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.