Abstract

Accelerating phase transposition efficiency of lithium polysulfides (LiPSs) to L2S and hampering the solution of LiPSs are the keys to stabilizing lithium-sulfur (Li-S) batteries. Hence, the sulfiphilic ultrafine Co9S8 nanoparticles embedded lithiophilic N, S co-doping carbon nanofibers (Co9S8/NSCNF) are prepared via the dual-template method, which are then used as sulfur host in Li-S batteries. Particularly, the double active sites (Co9S8 and N, S) in Co9S8/NSCNF are prone to form “Co-S”, “Li-O” or “Li-N” bonds, and then simultaneously improving the chemisorption and interface transposition capability of LiPSs. In case of the S@ Co9S8/NSCNF composites with high sulfur loading of 89% are employed as cathode, the cell possesses optimized “sulfiphilicity” and “lithiophilicity”, which achieves remarkable sulfur electrochemistry, including outstanding reversibility of 816.8mAhg−1 over 500 cycles at 1.0C, excellent rate property of 742.2mAhg-1at 5.0C, and long-term cycling with a low attenuation of 0.011% per cycle over 1800 cycles at 3.0C. Impressively, a remarkable areal capacity of 11.51mAhcm−2 is retained under the sulfur loading of 15.3 mg cm−2 for 50 cycles. This research will deepen the understanding of the complex LiPSs interface transposition procedure and provide new ideas for the design of new host materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.