Abstract

Microstructured optical fiber inline cavity designs are presented with lengths less than 60 μm, mode volumes less than 3 (λ0/n)3, and Q factors exceeding 3000. The device geometries are consistent with the fiber postprocessing capabilities of focused ion beam or femtosecond micromachining. The devices are based on introducing a longitudinally periodic hole array into a microstructured optical fiber. The micromachined fiber dispersion is calculated using the 3-D finite-different time-domain method. Bandgap frequencies, confined cavity mode frequencies, and quality factors are presented. Application of the device as a fast-response-time refractometer is explored, and sensitivities of 150 nm per refractive index unit are predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.