Abstract

Information Retrieval (IR) approaches are used to leverage textual or unstructured data generated during the software development process to support various software engineering (SE) tasks (e.g., concept location, traceability link recovery, change impact analysis, etc.). Two of the most important steps for applying IR techniques to support SE tasks are preprocessing the corpus and configuring the IR technique, and these steps can significantly influence the outcome and the amount of effort developers have to spend for these maintenance tasks. We present the use of Genetic Algorithms (GAs) to automatically configure and assemble an IR process to support SE tasks. The approach named IR-GA determines the (near) optimal solution to be used for each step of the IR process without requiring any training. We applied IR-GA on three different SE tasks and the results of the study indicate that IR-GA outperforms approaches previously used in the literature, and that it does not significantly differ from an ideal upper bound that could be achieved by a supervised approach and a combinatorial approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.