Abstract

We show that every finite configuration of disjoint simple closed curves of the plane is topologically realizable as the set of limit cycles of a polynomial vector field. Moreover, the realization can be made by algebraic limit cycles, and we provide an explicit polynomial vector field exhibiting any given finite configuration of limit cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.