Abstract

PurposeHigh-tech enterprises, as the national innovation powerhouses, have garnered considerable interest, particularly regarding their technological innovation capabilities. Nevertheless, prevalent research tends to spotlight the impact of individual factors on innovative behavior, with only a fraction adopting a comprehensive viewpoint, scrutinizing the causal amalgamations of precursor conditions influencing the overall innovation proficiency of high-tech enterprises.Design/methodology/approachThis paper employs a hybrid approach integrating necessary condition analysis (NCA) and fuzzy-set qualitative comparative analysis (fsQCA) to examine the combinatorial effects of antecedent factors on high-tech enterprises' innovation output. Our analysis draws upon data from 46 listed Chinese high-tech enterprises. To promote technological innovation within high-tech enterprises, we introduce a novel perspective that emphasizes technological innovation networks, grounded in a network agents-structure-environment framework. These antecedents are government subsidy, tax benefits, customer concentration, purchase concentration rate, market-oriented index and innovation environment.FindingsThe findings delineate four configurational pathways leading to high innovative output and three pathways resulting in low production.Originality/valueThis study thereby enriches the body of knowledge around technological innovation and provides actionable policy recommendations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.