Abstract

We discuss the statistical mechanical properties of a single polymer chain that forms cross links among its monomers. Models of this type have served as prototypes in theories of RNA and protein folding. The chain is allowed to form pseudoknots and its monomers can each participate in multiple cross links. We demonstrate that the conformational free energy of such a chain can be estimated by using an algorithm that scales as a power of the number of cross links N(N1-N3, depending on the problem). Straightforward exact evaluation of the chain partition function via multidimensional integration scales exponentially with N and often is computationally prohibitive. Our approach can also be used to compute the "entropic force" generated by a cross-linked chain when it is stretched at its ends. Such forces can be directly measured by atomic force microscopy or by laser optical trap experiments performed on single RNA, DNA, and protein molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.